Study finds mechanism to heal injured nerve fibers: Study
Researchers found new mechanisms that enables the regeneration of nerve fibers, which could open up new treatment approaches for the brain, optic nerve, and spinal cord injuries.
- Country:
- United States
Researchers found new mechanisms that enable the regeneration of nerve fibers, which could open up new treatment approaches for the brain, optic nerve, and spinal cord injuries. The researchers report on these results was published in the journal Nature Communications Biology on 23 August 2019.
The brain, spinal cord, and optic nerves are referred to collectively as the central nervous system. The nerve fibers, called axons, are unable to grow back following injury, meaning that damage is permanent. "It is possible to partially restore the regenerative capacity of nerve cells in the central nervous system by eliminating the inhibiting protein PTEN. However, a knockout of this kind also triggers many different reactions in the cells at the same time, which often lead to cancer," explained Professor from the Department of Cell Physiology at Ruhr-Universitat Bochum (RUB) Dietmar Fischer.
As a result, the direct inhibition of this protein is not suitable for therapeutic approaches in humans. What's more, the originally postulated mechanism underlying the renewed regenerative capacity following PTEN knockout could not be confirmed in further studies, causing the researchers to seek alternative explanations. While investigating this as-yet unclear mechanism, the Bochum-based researchers were able to show for the first time that PTEN knockout significantly inhibits an enzyme called glycogen synthase kinase 3, GSK3 for short.
This enzyme, in turn, blocked another protein called collapsin response mediator protein 2, CRMP2. This meant that the PTEN knockout prevents CRMP2 from being inhibited by GSK3.
"If we directly prevent this second step, i.e., stop the inhibition of CRMP2, we can also achieve the regeneration-promoting effect in a more specific manner," explained Dietmar Fischer. The activation of CRMP2 itself is not known to have any carcinogenic effect.
"Although we have so far only shown these effects in genetically modified mice and using gene therapy approaches, these findings open up various possibilities for the development of new drug approaches," explained the neuropharmacologist Dietmar Fischer.
Also Read: IIT, NIT researchers produce bone substitutes from egg shells
(This story has not been edited by Devdiscourse staff and is auto-generated from a syndicated feed.)
- READ MORE ON:
- researchers
- humans